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Nyquist interpolation improves neuron yield in multiunit recordings
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Abstract

Multiunit electrodes, in particular tetrodes and polytrodes, are able to isolate action potentials from many neurons simultaneously. However,
inaccuracies in the post-acquisition reconstruction of recorded spike waveforms can affect the reliability of spike detection and sorting. Here
we show that bandlimited interpolation with sample-and-hold delay correction reduces waveform variability, leading to improved reliability of
threshold-based event detection and improved spike sorting accuracy. Interpolation of continuously acquired data is, however, computationally
expensive. A cost-benefit analysis was made of varying sampling rates from 12.5 kHz (no interpolation) to 100 kHz (eight times oversampling, with
respect to the Nyquist frequency), taking into consideration the final application of the data. For most purposes, including spike sorting, sample
rates below 25 kHz with bandlimited interpolation to 50 kHz were ideal, with negligible gains above this rate. A practical benefit, especially for
large electrode arrays, is that the bandwidth and storage requirements can be greatly reduced by using data acquisition rates at or slightly above
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. Introduction

Extracellular recordings of neuronal spike activity from sin-
le microelectrodes have conventionally been made by passing
aw voltage waveforms through a window discriminator and
toring time-stamps of triggering events that are assumed to
orrespond to action potentials of a single neuron. In recordings
here only one active neuron lies close to the electrode, confi-
ence about this identification justifies discarding information
bout the precise shape of the waveform underlying the trigger-
ng event, since, for most purposes, knowledge of spike timing
s all that is required in later analyses. The advent of multisite,

ultiunit electrodes such as tetrodes (Gray et al., 1995), multi-
ire electrode arrays (Nicolelis et al., 2003), and silicon-based
olytrodes (Bai et al., 2000; Blanche et al., 2005; Campbell et
l., 1991; Csicsvari et al., 2003) has made it possible to record
rom many neurons simultaneously, but here the identification
f spike times from individual neurons depends critically on
ubtle variations in the amplitude and shape of the waveforms

∗

recorded at adjacent electrode sites. Although spike identifica-
tion with multiunit electrodes can sometimes be done in real
time with specialised hardware (Gadicke and Albus, 1995) it
is more desirable to store a continuous digital record of the
voltage waveform from each of the electrode sites and perform
spike identification off-line, after the experiment is completed.
This approach requires choices to be made about (i) how to
pre-process, i.e. filter, the voltage waveforms prior to analog to
digital conversion (ADC), (ii) an appropriate sampling rate, and
(iii) how to reconstruct the waveforms from the digital record
prior to analysis. These topics are addressed in this paper.

According to sampling theory (Nyquist, 1928; Shannon,
1949; Whittaker, 1935), for signals low-pass filtered with an
upper cut-off frequency W = 5 kHz, a sample rate of 10 kHz
(2W, twice the Nyquist frequency) should be sufficient for accu-
rate reconstruction of the original waveform. However, neu-
rophysiologists routinely record spike activity at sample rates
between 20 and 40 kHz. Waveforms sampled according to the
Nyquist criterion do not appear to provide an accurate repre-
sentation of the original spike waveforms (Fig. 1), which may
explain the common practice of oversampling. Nevertheless, the
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Shannon–Nyquist theorem states explicitly that if a bandlimited
signal s(t) is sampled at a rate 2W then s(t) is completely deter-
mined, and can be recovered from its samples, sn, by discrete
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Fig. 1. The case for upsampling. A linearly interpolated spike (∼240 �Vpp

amplitude, thick line) sampled at the Nyquist rate (12.5 kHz, large dots), pro-
vides a poor rendition of the original waveform sampled at 100 kHz (fine black
line), particularly at the spike onset, peak and valley. Spike amplitudes will
be consistently underestimated, and threshold-based spike detectors set in the
ranges ε1 and ε2 will miss a percentage of spike events due to asynchronous
sampling (i.e. spikes occur randomly with respect to the periodic sampling).
After interpolation to 100 kHz (small dots) an accurate reconstruction of the
underlying waveform is obtained. The cubic spline interpolated waveform (fine
grey line) is shown for comparison.

convolution with an appropriate reconstruction function (usually
a sinc function, see Section 2).

The Nyquist sampling rule is often misconstrued as imply-
ing that the raw samples constitute the original signal and do
not require further processing. What is usually neglected is the
requirement for reconstruction of the voltage waveform using
bandlimited interpolation, otherwise known as ‘upsampling’.
Although this method of signal reconstruction is standard, it is
rarely exploited by neurophysiologists (two exceptions include
Chandra and Optican (1997) and Pouzat et al. (2002)). In this
paper we show that inadequate reconstruction of spike wave-
forms can result in errors of spike detection, distortion of spike
shapes, and compromise the performance of spike sorting algo-
rithms. We also show the need for correction of sample-and-hold
delays (SHDs) caused by the serial sampling of channels that
is implemented by most multichannel data acquisition boards.
These delays, though small, can significantly skew the temporal
alignment of multisite recordings made with polytrodes. Upsam-
pling provides tangible benefits with respect to the reliability of
spike detection, estimation of spike waveform parameters, accu-
racy of spike sorting, and ultimately single-unit yield in multiunit
recordings.

2. Materials and methods
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where W is the sampling rate. W/2 is commonly referred to as
the Nyquist frequency, or Nyquist limit.

Reconstruction of bandlimited digitized signals in the time
domain is done by discrete convolution with a sinc function:

s(t) =
n=∞∑

n=−∞
s(n)h(t − n) (2)

where s(t) is the reconstructed waveform voltage at time t, s(n)
is the raw voltage waveform sampled at time intervals n = 1,
2, 3 . . . (for convenience time units are chosen such that the
sampling interval �t = 1), and h(t) is the sinc reconstruction
function:

h(t) = sin πt

πt
(3)

The sinc (meaning “cardinal sine”) function (Fig. 2B) is the
theoretically perfect reconstruction filter for bandlimited sig-
nals, since its Fourier transform is a box centered around DC of
unitary width (Fig. 2A). The period of the sinc function is twice
the sampling period, with zero crossings aligned with the origi-
nal sample points. It follows that convolution with a zero phase
(t = 0) sinc kernel leaves these samples unchanged (Fig. 2C, open
triangles). The signal at arbitrary time, t, is evaluated by the coef-
ficients of time-shifted sinc kernels (e.g. t = 0.5, filled triangles
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.1. Bandlimited interpolation

An analog signal s(t) is bandlimited in accordance with the
yquist criterion if its Fourier transform:

[s(t)] = S(f ) = 0 for |f | >
W

2
(1)
n Fig. 2C).
The sinc is an infinite impulse response (IIR), as any func-

ion that has a finite extent in the frequency domain must have
n infinite extent in the time domain (and vice versa). The
inc keeps oscillating with ever decreasing amplitude, so for
ractical purposes it needs to be windowed. Windowing atten-
ates the sinc function to zero at the extremes, thereby pro-
ucing a finite impulse response (FIR) filter kernel (Fig. 2C).
apering the sinc function instead of simply truncating it
inimizes bandpass ripple (Gibbs’ phenomenon). There are
any suitable window functions (Horowitz and Hill, 1989;
mith, 1997, 2004): here a simple Hamming window was
sed.

Ideally, sinc interpolation should be done with sufficient reso-
ution that interpolating linearly between upsampled points does
ot introduce error greater than the quantization error of the ADC
Smith, 2004). In practice this is computationally infeasible. For
ata recorded with a 12-bit ADC (see below), a filter kernel of
otal length N = 12 (i.e. with six zero crossings on either size of
he origin at t = 0, requiring 13 data points to represent it) was
ound to provide adequate precision. Combining Eq. (2) with
Hamming window, wh gives a tapered FIR filter suitable for
iscrete time series convolution:

(t) =
n=6∑

n=−6

s(n)wh(t − n)h(t − n) (4)

here

h(t) = 0.54 − 0.46 cos π

(
2t + N

N

)
(5)
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Fig. 2. Bandlimited interpolation using sinc convolution. (A) Frequency response of the ideal low pass filter. Signals below the Nyquist frequency pass unchanged,
and those above are excluded. (B) The impulse response of the ideal filter is a sinc function that extends infinitely in time, so for practical purposes it needs to be
windowed. (C) Convolution of a bandlimited digitized signal with time-shifted windowed sinc functions can accurately reconstruct the original analog waveform.
Depicted are the four 13-point sinc kernels used to upsample a spike shown from 12.5 kHz (large circles) to 50 kHz (small circles). For clarity the filter coefficients
are only shown for the zero (open triangles) and 180◦ (filled triangles) phase kernels. In this example, the interpolant at the peak of the spike (arrow) derives from
the 13 surrounding raw sample points convolved with the 180◦ phase kernel (see text for details).

2.2. Sample-and-hold delay correction

Most digital acquisition cards have a single analog to digital
converter and therefore cannot sample multiple channels simul-
taneously. The usual solution is to combine sample-and-hold
circuits with rapid signal multiplexing (so-called “burst-mode”
acquisition) to obtain near-simultaneous sampling across all
channels. Resultant SHD artefacts can be corrected during the
interpolation process by using appropriately phase-shifted sinc
kernels, without additional computational overhead:

si(t) =
n=6∑

n=−6

s(n)whh(t − n + di) (6)

where d is the channel–channel SHD interval and i is the ordinal
position of the channel in the hold queue. For the cards used

in this study operating in 1 MHz burst mode d = 1 �s. In more
general terms, the channel-specific phase offset is proportional
to its ordinal position in the hold queue, typically a small fraction
of the sampling period.

Appropriately phase-shifted and windowed sinc kernels, for
each combination of interpolant and SHD phase offset, were pre-
calculated and stored in indexed arrays to speed the calculation
of Eq. (6).

2.3. Instrumentation and test waveforms

The potential benefits and optimal rate of upsampling for
neuronal spike recordings were addressed empirically. Continu-
ously sampled neural activity was recorded with a polytrode
– a 54 channel silicon electrode array with closely spaced
(46–75 �m) recording sites – inserted into the primary visual
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cortex of an anesthetized cat. Full details of the experimental
setup are given in Blanche et al. (2005). Signals were amplified
5000× and bandpass filtered (500–6 kHz) with a multichannel
amplifier (FA-I 64, Multichannel Systems, Germany), before
digital sampling with 12 bit resolution by two 32-channel ADC
cards (DT3010s, Data Translation, MA) at 100 kHz/channel.
The noise of the system was 3–4 �Vrms (∼20–30 �Vpp), and
while some spikes were as large as 1.2 mVpp, more typically
they were in the range 100–200 �Vpp (Blanche et al., 2005).

Since the original test data were oversampled at 100 kHz,
lower sampling rates were obtained by sub-sampling. Improve-
ments in waveform reconstruction, spike detection and sorting
were evaluated for Nyquist sampled and two-, four- and eight-
times upsampled data, corresponding to effective sampling rates
of 12.5, 25, 50 and 100 kHz, respectively.

3. Results

3.1. Ideal bandlimited interpolation

A typical extracellular neural recording made with our sys-
tem had a power spectral density proportional to ∼1/f2 beyond
a broad peak at ∼1.3 kHz (Fig. 3A). Most (92.5%) of the
energy was below 6.25 kHz, the Nyquist frequency for data
sampled at 12.5 kHz. Only 6.6% of the energy was between
6.25 and 12.5 kHz, and frequencies above 12.5 kHz contributed
less than 1% of the total signal energy. Since there was some
frequency content above the nominal 6 kHz corner frequency
(−3 dB) of the amplifier’s anti-alias filter, the “cut-off” fre-
quency can clearly not be equated with the Nyquist frequency
(Eq. (1)) and used to determine an adequate sampling rate.
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ig. 3. Signal fidelity at different sample rates. (A) Power spectrum of about 2 min w
ampled at 100 kHz (solid black line) compared with 12.5, 25, and 50 kHz samplin
inearly interpolated 25 kHz data (blue line), Nyquist interpolation from 25 to 50 kHz
f interest for spikes. The least significant bit (LSB) line demarcates the precision o
aveforms is shown as a function of effective sampling rate, for decimated data (bla

nd 100 kHz can be attributed to energy in the transition pass of the anti-alias filter
rror when upsampling from 25 to 50 kHz, as a function of sinc kernel length N.
orth of extracellular recording, containing a representative number of spikes,
g rates (sub-samples of the 100 kHz record with linear interpolation). Unlike
(red line) faithfully restores the frequency content up to 12.5 kHz, the bandpass
f the acquisition system (∼11.5 usable bits). (B) Interpolation error for spike
ck bars) and data upsampled from 25 kHz (grey bars). The residual error at 50
between 12.5 and 50 kHz (shaded region in A). (C) Residual spike waveform
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The issue of signal aliasing is considered further in Sec-
tion 4. For now the key observation is that the frequency
content of data sampled at 12.5, 25, or 50 kHz and recon-
structed by linear interpolation between samples deviates sig-
nificantly from the 100 kHz spectrum, whereas data sampled
at 25 kHz and upsampled by sinc interpolation to 50 kHz cap-
tured the original spectrum almost perfectly up to 12.5 kHz
(Fig. 3A).

Notice the strong attenuation of signals above 12.5 kHz (the
Nyquist frequency for data upsampled from 25 kHz). Since most
neurophysiological signals of interest have frequencies below
12.5 kHz (indeed, all but the fastest spikes have 98% of their
energy below 6.25 kHz, see Section 4), the removal of high
frequency noise that may exist in the transition bandpass of
oversampled raw signals is another side benefit of bandlimited
interpolation.

3.2. Spike waveform reconstruction

The root-mean-squared (RMS) error caused by linear inter-
polation of spike waveforms sampled at 12.5 kHz was three to
four times the aggregate noise of the recording system (Fig. 3B).
This error decreased rapidly as the original data were progres-
sively oversampled, but the same result was achieved for data
upsampled from 25 to 50 or 100 kHz. The small residual error at
50 and 100 kHz is attributable in part to the aforementioned high
frequency noise between 12.5 and 50 kHz, and also because lin-
ear interpolation of upsampled data is still an approximation of
the original waveform. This level of precision was attained with
≥9 point sinc kernels (Fig. 3C), and no further improvements
were evident above 13 points (i.e. six zero crossings).

Interpolation using windowed sinc convolution accurately
reconstructed spike waveforms (Fig. 4A and C) whereas linear
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ig. 4. Interpolation improves spike waveform reconstruction. Sinc interpolation of N
n = 313) medium amplitude spike was poorly represented at 12.5 kHz (dots), wherea
hape (grey line, acquired at 100 kHz). (B) Without upsampling, waveform-derived
alley amplitudes (nb: spike amplitude = peak − valley amplitude). (C) A fast-spiking
dequate interpolation. Consequently (D) spike amplitudes were miscalculated. Error
yquist-sampled data faithfully reconstructs spike waveforms. (A) An averaged
s upsampling to 100 kHz (small dots) accurately matched the underlying spike
spike parameters showed increased variance and underestimation of peak and
neuron (n = 1640) had even greater waveform distortion and variability without
bars are the mean ± S.D. **p < 0.00001.
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interpolation gave a poor rendition of the underlying spike shape.
Accordingly, estimates of spike amplitude (Fig. 4B and D) were
consistently low. For example, the regular spiking neuron in
Fig. 4 had an average estimated spike amplitude of 172 �Vpp at
100 kHz, but only 117 �Vpp at 12.5 kHz, 68% of the true ampli-
tude. Averaging across many spikes is not a solution, because the
asynchronous nature of the sample times with respect to the spike
occurences gives rise to the variability shown in Fig. 4A and C.
Without interpolation, estimates of spike width based on the
average waveform were relatively accurate (108 �s at 12.5 kHz
versus 96 �s at 100 kHz for the fast-spiking neuron), however,
spike–spike variability caused by temporal aliasing (80 �s at
12.5 kHz) was unacceptably high and manifest as increased
noise in the y-axis values. Spike width standard deviation was
proportional to roughly half the sampling period (i.e. 44.8 �s
at 12.5 kHz compared with just 5.3 �s at 100 kHz). Therefore,
even if spike-triggered averages are used for the generation of
spike sorting templates, or to derive waveform metrics, spike
amplitude and shape variability is still affected by the temporal
misalignment of individual spike events.

Sinc interpolation increased the effective sampling rate, with
concomitant improvement in waveform fidelity. There was a
gradual improvement in spike shape with increased sampling
rate, most noticeably for fast spiking neurons and in regions of
the waveform with high slew rates, such as the depolarisation
phase (Fig. 4A and C). Slower regions of the spike wave-
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3.3. Reliability of event detection

Variability in the amplitude of spike peaks caused by asyn-
chronous digital sampling can result in missed spike events
(threshold ranges ε1 and ε2 in Fig. 1). The magnitude of this
error was quantified by counting the number of spikes from a
single neuron interpolated to different effective sampling rates
over a range of trigger thresholds. In the first of two represen-
tative examples (Fig. 5A) a large-amplitude neuron fired 303
spikes, all of which were detected at a threshold level of +250 �V
or lower, irrespective of the sample rate. As the threshold was
increased, the number of triggers decreased, so that by +450 �V
no spikes were detected. The relationship between the number of
detected events and the threshold level was well described by the
sigmoidal function y = a/(1 + e(x−x0)/b) where a is the maxi-
mum height of the function, x0 the position at half-height, and
b is the inverse of the slope (i.e. large values of b mean a small
slope). Lateral shifts in the sigmoid result from changes in the
mean spike amplitude at different sampling rates. Broader dis-
tributions of spike amplitude produce shallower slopes, and vice
versa. Factors affecting spike amplitude include intrinsic vari-
ability of the action potential, biological and recording system
noise, and the discrete, asynchronous nature of digital sampling.
Changes in the slope of the sigmoid (and hence the range over
which the same spikes were detected) at different sampling rates
indicate differences in spike amplitude variance attributable
e
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F holds
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d imply
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m ly inc
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orm, including the repolarisation and after-hyperpolarisation
hases, were in a sense already oversampled because they
ere comprised of lower frequencies. The high variability and
oor accuracy of linearly interpolated Nyquist-sampled data is
ot only undesirable for spike sorting (see below) but is also
nadequate for other applications, such as modeling of neu-
onal field potentials and classification of cell type based on
pike amplitude and width (Bartho et al., 2004; Blanche et al.,
003).

ig. 5. Interpolation improves spike detection reliability. Different trigger thres
ampling rates. (A) For large amplitude solitary spikes, upsampling afforded
istinguished from other spikes (and the background noise) at any sample rate s
ere often only reliably detected after upsampling to 25 kHz or more. At the
issed at 12.5 kHz, but lowering the absolute value of the threshold dramatical

re sigmoidal functions (r2 ≥ 0.99). As the 100 kHz plots were indistinguishabl
ntirely to sampling. For the large amplitude spike shown in
ig. 5A the shallower slope at 12.5 kHz (b = 23) compared with

hat for 25 and 50 kHz (b = 16) reflects a small increase in sam-
ling related spike amplitude variability. However, for this unit
here was little benefit of higher sampling rates in terms of
etection reliability, because simply lowering the threshold to
250 �V gave perfect detection without an increase in spuri-
us triggers from noise or other spike events. This was not the
ase in the second example (Fig. 5B), where the broader spread

were required to detect the same spike events from a given neuron at different
enefit in terms of detection reliability. All spikes from this neuron could be
by adjusting the threshold. (B) Fast spiking, lower amplitude spikes, however,
threshold for higher sampling rates (−55 �V, dotted line) many spikes were
reased the number of false triggers (arrow). In both examples the fitted curves

those at 50 kHz, they were removed for clarity. Scalebars = 2 ms.



T.J. Blanche, N.V. Swindale / Journal of Neuroscience Methods 155 (2006) 81–91 87

Fig. 6. Interpolation reduces cluster variability. Regardless of the features used for spike sorting, higher sampling rates yielded lower cluster variability. (A) Spike
peak vs. valley amplitudes from a single neuron (n = 316), mean-subtracted to show the cluster spreads at each of the four sampling rates tested. (B) Uncentred
spike amplitude clusters from another neuron (n = 1253). Underestimation of spike amplitudes produced the drift in cluster centres at low sample rates. High cluster
variance at 12.5 kHz, made separation of spikes from noise very difficult. (C) PCA-based cluster plots of spikes upsampled to 100 kHz produced three neuron clusters
(small ellipses), each distinct from each other and the noise cluster (large ellipse). In contrast, clusters derived from the same spike events sampled at the Nyquist
rate were mixed, and less well separated from the noise cluster.

of amplitudes at 12.5 kHz (b = 12 versus 8 at 25 kHz) meant
that all spikes from this neuron (n = 1650) could only be delin-
eated from the background noise after interpolation. Even at the
most favourable threshold (Fig. 5B, dotted line), just 80% of
the Nyquist-sampled spike events were detectable, and raising
the threshold produced an exponential increase in the number
of false positives triggered by other small amplitude neurons
and noise. For all spikes examined (n = 15), the proportionally
largest improvement in detection reliability was from 12.5 to
25 kHz, with no further gains beyond 50 kHz.

3.4. Cluster variability

In order for spike clustering methods to effectively isolate sin-
gle units, clusters from different neurons need to have minimal
or no overlap with each other and the noise cluster. One of the
consequences of sampling related variability is increased cluster
scatter, which, as before, can be minimised with Nyquist inter-
polation (Fig. 6). Two-, four- and eight-times upsampling each
approximately halved the standard deviation of spike amplitude
clusters compared to those generated from Nyquist sampled data
(e.g. 28–15 �V for the spikes shown in Fig. 6A, 36–21 �V for
Fig. 6B). For spike sorting based on dimension-reduced wave-
form features, for example principal component analysis (PCA,
Abeles and Goldstein, 1977), Nyquist interpolation with pre-
cisely aligned spikes produced clusters that were delineated from
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(Fig. 7A). With our recording system the delay of a given site was
1 �s/channel. The maximum phase advance caused by the SHDs
of the 32 channel DT3010 data acquisition cards was thus only
31 �s, however,this would be sufficient to corrupt instantaneous
spike amplitude measurements (Fig. 7B) needed for modeling
the spatial distribution of spike potentials across channels under
quasistatic conditions (Blanche et al., 2003). Likewise, stud-
ies of microsecond precision spike timing (Brand et al., 2002;
Kawasaki et al., 1988; Wagner et al., 2005) would be confounded
by SHDs of this magnitude. For these sorts of analyses, SHD
artefacts should be compensated (Eq. (6)) during the interpola-
tion process.

4. Discussion

The task of isolating single units in multiunit recordings
is challenging enough without the added variability caused
by inaccurate waveform reconstruction. Linear interpolation of
analog signals sampled at the Nyquist frequency cannot cap-
ture the true shape of a spike waveform. Accordingly, spike
events may be missed, and spike metrics that are needed for
later analyses such as spike sorting will be compromised. While
the usual solution is to oversample, this places an extra bur-
den on the acquisition hardware and data storage requirements.
The development of high-speed high-channel acquisition boards
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ach other and the noise (Fig. 6C). In this example, average
luster separation measures based on the Mahalanobis distance
Blanche et al., 2005; Mahalanobis, 1936) were 1.8 for the
ixed raw clusters, and 9.2 for the 100 kHz upsampled clus-

ers. Improvements in cluster separation translate into higher
euron yields with better quality single unit isolation.

.5. SHD correction

While SHDs of a few microseconds are of no consequence for
etrode recordings, with polytrodes they accumulate to produce
ignificant phase disparities in waveforms recorded across sites
as not kept pace with recent advances in multisite electrode
rrays that have hundreds (Litke et al., 2004) or thousands
Bai et al., 2000) of recording sites. These devices generate
igabytes of data per minute sampling at 25 kHz per chan-
el, so in spite of the remarkable storage capacities of modern
esktop computers, there are real incentives for avoiding over-
ampling. In this report we have demonstrated that windowed
inc interpolation can achieve the same end as oversampling (as
t should on theoretical grounds). In addition, we have shown
hat SHD correction removes systematic sampling delays that
an have a deleterious effect on cross-channel spike wave-
orm analyses that depend on truly simultaneous cross-channel
easurements.
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Fig. 7. Sample-and-hold delay correction. (A) A 1 kHz sine-wave signal sampled “near simultaneously” on different channels of the two 32-channel data acquisition
cards (sharing a common sampling clock). Accumulation of SHDs produced artefactual phase misalignments (upper panel). The same waveforms interpolated with
SHD correction (lower panel) were perfectly aligned (note that ch0/ch32, ch1/ch33, etc. were the corresponding pairs of channels on each acquisition card, and
therefore exhibit the same delay). (B) A similar demonstration of the effect of SHDs on a spike recorded by 16 neighbouring polytrode recording sites, before and
after SHD correction.

That windowed sinc interpolation restores the original spike
waveform does not imply that information over and above that
contained in the original samples has been added, since irrespec-
tive of whether the data were sampled according to the Nyquist
criterion, these are either already filtered out of the original data
or are aliased into frequencies below the Nyquist limit. Thus,
upsampling 25 kHz sampled data to 100 kHz does not produce
waveforms containing frequencies over 12.5 kHz (Fig. 3A, red
line). It follows that if only Fourier methods are used in the sub-
sequent analysis of the raw data (e.g. Kayser et al., 2003; McGill
and Dorfman, 1984) there is no advantage to interpolating in the
time domain. However, most electrophysiological analyses such
as spike detection, slope and amplitude estimation, peri-stimulus
time histograms, burst analysis, reverse correlation and so forth
are done in the time domain, and it is here that the benefits of
correct interpolation will be realised.

Supplementary digital filters can be incorporated into the
interpolation process, just as the Hamming window was con-
volved with the IIR filter to give the FIR kernel. As convolution
is associative, repetitious convolution of the time series for each
filter pass can be avoided by convolving the actual sinc kernel
with the filter or filters of interest. Kernels for a multitude of pur-
poses, including high-pass, low-pass, and notch-filters, kernels
for smoothing or removal of dc signals, differentiation, integra-
tion and so forth (Smith, 1997), can thus be applied without
additional computational overhead.

4

B
t

(Table 1). For multiunit spike data all significant improvements
in accuracy and precision afforded by interpolation had been
attained by 50 kHz. Upsampling to 100 kHz does not, therefore,
justify the doubling in computation time or bandwidth. There
is no single optimal rate of oversampling; it depends on how
the data will ultimately be used. For analyses exclusively in the
frequency domain, sample at the Nyquist frequency. If the goal
is to generate tuning response curves from average spike counts,
then for large amplitude spikes that are already well isolated it
could be argued that undersampling is sufficient. Any missed
spike triggers would be randomly distributed across trials, and
the shape of the tuning curve would still be accurate. At the
other extreme, attempting to infer intracellular state from mul-
tisite extracellular waveform distributions (Henze et al., 2000),
or studies of spike timing reliability and precision on the sub-
millisecond (DeWeese et al., 2003; Mainen and Sejnowski,
1995) and microsecond (Brand et al., 2002; Kawasaki et al.,
1988; Wagner et al., 2005) timescale, may benefit considerably
from upsampling.

Interpolation may also be applied to specific stages in the data
processing stream. For example, the quality of PCA-based spike
sorting relies on precise spike alignment (Lewicki, 1998), how-
ever, the realism of the spike waveform is unimportant so long
as the shape is consistent. By upsampling to 50 kHz to ensure
reliable spike detection and peak alignment, followed by sub-
sampling back to 10 kHz to speed the calculation of the principal
e
t
i
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.1. An optimal level of upsampling?

Interpolation by convolution is computationally intensive.
oth the quantity of data that must be managed and the time it

akes to be processed is proportional to the rate of interpolation
igenvalues, processing of large scale recordings from poly-
rodes can be made more efficient while at the same time improv-
ng the quality of sorting (data not shown). Similarly, waveform
ubtraction algorithms that attempt to decompose overlapping
pikes (Atiya, 1992; Lewicki, 1994) perform poorly if the canon-
cal spike templates are inaccurate. Misalignment of the spike
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Table 1
Cost-benefit analysis of upsampling

Interpolation
factor

Effective sampling
rate (kHz)

Spike detection Spike amplitude Spike shape Spike widtha CPU load
(ms/chan/s)b

Bandwidth
(KB/chan/s)c

1× 12.5 + + + + ≤1d 25
2× 25 +++ +++ ++ +++ 4.0 ± 0.1 50
4× 50 ++++ ++++ +++ ++++ 8.1 ± 0.3 100
8× 100 ++++ ++++ ++++ ++++ 16.2 ± 0.4 200

The benefits of spike waveform interpolation at different rates of upsampling, balanced against computational load and bandwidth requirements. Rating scale + to
++++, relative to raw data sampled at the Nyquist rate (more pluses denote higher accuracy and precision).

a Applies to both single spikes and the alignment precision of multiple, averaged spikes.
b Average ± S.D. of 100 measurements for 13 pt sinc kernels, computed on an Athlon 1800+ processor.
c For 12–16 bit data.
d Overhead for (sequential) file streaming from the hard disk.

template and the measured waveform can introduce spurious
spike-like artefacts. To keep these residual artefacts below the
RMS noise level, Lewicki (1994) estimated the required align-
ment precision to be in the range of 2–10 times the Nyquist
sampling rate, similar to that suggested here.

4.2. Other interpolation methods

Meijering (2002) provides a comprehensive review of the
many available methods of interpolation, but only Fourier-based
techniques such as bandlimited interpolation have a solid the-
oretical grounding. Alternative methods, such as cosine, Gaus-
sian, polynomial and cubic spline interpolation (Schafer and
Rabiner, 1973) are useful for display purposes but do not give
bona fide reconstructions. Cubic spline interpolation (based
upon smooth, continuous first and second derivatives) can be
used to accurately locate waveform peak and valley times
(Wheeler and Smith, 1987) and requires only a few samples
around the raw peak to be interpolated. In turn PCA-based spike
sorting can be made more accurate. Aside from this specific
purpose, however, cubic splines are not useful for quantita-
tively accurate waveform reconstruction (Fig. 1). Moreover, it
is computationally prohibitive to process continuously acquired
waveforms with cubic splines, making it unsuitable for improv-
ing spike detection reliability. In any case there is no reason
for not using the theoretically correct Fourier methods of inter-
p
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p
c
a
n
u
f
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4

l

interpolation is a theoretically sound, effective method of achiev-
ing the same end. However, before lowering the acquisition rate
the potential for signal aliasing must be considered, because
the transition bandpass of analog anti-alias filters can be very
broad, and the sampling theorem requires zero energy above
the Nyquist frequency (Eq. (1)). The risk of aliasing is high if
the Nyquist frequency is uncritically equated with the corner or
“cut-off” frequency of the amplifier low-pass filters. One way to
relate the relevant factors of filter roll-off, the signal (including
noise) energy in the transition bandpass, and the level of accept-
able distortion from aliasing given the overall dynamic range of
the system, is the sampling ratio:

SR = s

fc
= 1 + fr

fc
(7)

where s is the sampling rate, fr the frequency at the required
attenuation, and fc is the −3 dB corner frequency of the anti-
alias filter.

We illustrate this by considering the characteristics of
the electrophysiology system used in this study (Fig. 8).
To maintain the precision of a 12 bit (72 dB, or ∼0.02%
quantization error) acquisition system, with fc set at 6 kHz
and 100 dB/decade anti-alias filters (manufacturer specifica-
tions cite five pole RC filters, each of which should provide
20 dB/decade/pole = 100 dB/decade, or 30 dB/octave, of net sig-
nal attenuation), the required fr is 28 kHz. This gives a SR = 5.7
a
c
f
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b
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s
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olation given that standard desktop computers are capable of
rocessing hundreds of channels at a rate faster than real time
Table 1).

Computing interpolated sample points by applying suitable
hase rotations in the frequency domain is equivalent to sinc
onvolution in the time domain. But since the raw waveforms
re usually stored as time series and the length of the sinc ker-
els are short, converting the data into the frequency domain,
psampling it, and converting it back to the time domain for
urther processing is slower than direct convolution in the time
omain, even if the fast Fourier transform (Press et al., 1994)
lgorithm is used.

.3. Avoiding aliasing

There are few compelling reasons to heavily oversample ana-
og signals during data acquisition, as post hoc bandlimited
nd a sampling rate s = 34 kHz, well above the Nyquist rate cal-
ulated on the assumption of a “brick-wall” filter with fr equal to
c (Fig. 8A). However, the SR is a very conservative guide, as it
ssumes a white energy spectrum (i.e. in and above the transition
and) and zero tolerance to aliased signals. It also ignores other
ources of noise that reduce the overall dynamic range, or effec-
ive number of bits (ENOB), of the system as a whole. For our
ystem, a more realistic estimate might put the ENOB of the 12
it analog ADCs at 11.5bits (69 dB, or ∼0.03% precision) when
ntrinsic electronic noise, harmonic distortion, and potential for
rosstalk in the ADC during high speed signal multiplexing
re taken into account. The measured filter decay was closer
o 60 dB/decade beyond the corner frequency (Fig. 8B), consid-
rably less than 100 dB/decade. On the other hand, the combined
ignal and noise power spectra were not white (Fig. 3A). Energy
t the corner frequency, of background neural hash recorded in
ivo (with all apparatus connected and switched on, but exclud-
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Fig. 8. Avoiding aliasing at lower sampling frequencies. (A) Determining an appropriate sampling rate depends on the corner frequency fc, the frequency at the
required level of attenuation, fr, and the slope of the anti-alias low-pass filter. The pass band is defined as the range of frequencies below fc that pass signals without
change in amplitude. The frequency range between fc and fr is called the transition band. Signals in this range are subject to aliasing if the most common interpretation
of the Nyquist sample rule is applied (i.e. 2 × fc). Frequencies above fr are referred to as the stop band. For an ideal filter [white dotted line (print version); red dotted
line (web version)] fr = fc so the SR = 1+1/1 = 2, in accord with the Nyquist criterion. For narrow transition bands [dashed lines (print version); green shaded region
(web version)], the SR will be slightly higher, for broad transition bands [black dotted lines (print version); blue shaded region (web version)]; the SR will be higher
still. (B) Filter characteristics of the amplifier system used in this study. (C) RS and FS neurons with similar amplitudes (insets) have different frequency spectra due
to differences in waveform shape. The average spike spectrum (n = 148) is dominated by the RS spectrum since FS neurons were much less prevalent and typically
of lower amplitude. (For interpretation of the reference to colour in the figure legend, the reader is referred to the web version of the article.)

ing spikes), was∼0.02% full-scale, close to the fr. Regular spikes
(RS) on average had an even lower power at 6 kHz, however, FS
neurons had significant energy beyond 6 kHz (Fig. 8C). Taken
together, a more realistic SR for this acquisition system would
be 3.4, which implies that significant aliasing of noise and spikes
from FS neurons would be avoided by sampling at 20 kHz. Alter-
natively, if anti-alias filters with fc = 5 kHz and a steeper roll-off
were substituted into the amplifiers, or if up to 10 �Vpp alias-
ing was deemed acceptable, then the SR would ≈2.4, yielding
a sampling rate of about 12 kHz. However, the ability to dis-
tinguish FS neurons from RS neurons would be significantly
compromised by filtering and sampling at this reduced rate.

From a practical standpoint, there are other reasons for acquir-
ing and storing data at slightly more than twice the Nyquist
frequency (even if defined by fc). Nyquist-sampled spikes moni-
tored online (i.e. without sinc interpolation) have poor definition,
so moderate oversampling avoids the need to interpolate online.
Oversampling of raw signals allows for considerably shorter
sinc FIR filter kernels for an equivalent level of interpolation

precision, because the number of zero crossings required is
determined by the width of the transition bandpass. A small per-
centage increase in the original sampling rate affords a larger
percentage saving in computation time because the added band-
width is a larger percentage of the filter transition bandwidth
than it is of the original sampling rate (Smith, 2004). For exam-
ple, given an fc of 6 kHz, the transition band for a sampling
rate of 15 kHz is about 1.5 kHz, while at 18 kHz the transition
band is 3 kHz. A 20% increase in sampling rate thus halves the
computational load during upsampling, and high precision inter-
polation is possible with filter kernels containing as few as 13
points (Fig. 3C).

5. Conclusions

The rationale for upsampling was to lessen the detrimen-
tal effects of digital sampling related variability in order to
obtain more accurate spike waveform measurements and, in turn,
improve spike detection and sorting. Sampling at 10–20 kHz
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(depending on the specifications of the system’s amplifiers, fil-
ter characteristics, and biological signals of interest) followed by
bandlimited (Nyquist) interpolation to 50 kHz is strongly recom-
mended, and preferable to oversampling the original signal.
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